Flexiv RDK APIs  1.6.0
intermediate4_realtime_joint_floating.cpp

This tutorial runs real-time joint floating with gentle velocity damping, gravity compensation, and soft protection against position limits. This example is ideal for verifying the system's whole-loop real-timeliness, accuracy of the robot dynamics model, and joint torque control performance. If everything works well, all joints should float smoothly.

Author
Flexiv
#include <spdlog/spdlog.h>
#include <iostream>
#include <string>
#include <thread>
#include <atomic>
using namespace flexiv;
namespace {
const std::vector<double> kFloatingDamping = {10.0, 10.0, 5.0, 5.0, 1.0, 1.0, 1.0};
std::atomic<bool> g_stop_sched = {false};
}
void PrintHelp()
{
// clang-format off
std::cout << "Required arguments: [robot_sn]" << std::endl;
std::cout << " robot_sn: Serial number of the robot to connect. Remove any space, e.g. Rizon4s-123456" << std::endl;
std::cout << "Optional arguments: None" << std::endl;
std::cout << std::endl;
// clang-format on
}
void PeriodicTask(rdk::Robot& robot)
{
try {
// Monitor fault on the connected robot
if (robot.fault()) {
throw std::runtime_error(
"PeriodicTask: Fault occurred on the connected robot, exiting ...");
}
// Set 0 joint torques
std::vector<double> target_torque(robot.info().DoF);
// Add some velocity damping
for (size_t i = 0; i < target_torque.size(); ++i) {
target_torque[i] += -kFloatingDamping[i] * robot.states().dtheta[i];
}
// Send target joint torque to RDK server, enable gravity compensation and joint limits soft
// protection
robot.StreamJointTorque(target_torque, true, true);
} catch (const std::exception& e) {
spdlog::error(e.what());
g_stop_sched = true;
}
}
int main(int argc, char* argv[])
{
// Program Setup
// =============================================================================================
// Parse parameters
if (argc < 2 || rdk::utility::ProgramArgsExistAny(argc, argv, {"-h", "--help"})) {
PrintHelp();
return 1;
}
// Serial number of the robot to connect to. Remove any space, for example: Rizon4s-123456
std::string robot_sn = argv[1];
// Print description
spdlog::info(
">>> Tutorial description <<<\nThis tutorial runs real-time joint floating with gentle "
"velocity damping, gravity compensation, and soft protection against position limits. This "
"example is ideal for verifying the system's whole-loop real-timeliness, accuracy of the "
"robot dynamics model, and joint torque control performance. If everything works well, all "
"joints should float smoothly.\n");
try {
// RDK Initialization
// =========================================================================================
// Instantiate robot interface
rdk::Robot robot(robot_sn);
// Clear fault on the connected robot if any
if (robot.fault()) {
spdlog::warn("Fault occurred on the connected robot, trying to clear ...");
// Try to clear the fault
if (!robot.ClearFault()) {
spdlog::error("Fault cannot be cleared, exiting ...");
return 1;
}
spdlog::info("Fault on the connected robot is cleared");
}
// Enable the robot, make sure the E-stop is released before enabling
spdlog::info("Enabling robot ...");
robot.Enable();
// Wait for the robot to become operational
while (!robot.operational()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
spdlog::info("Robot is now operational");
// Move robot to home pose
spdlog::info("Moving to home pose");
robot.SwitchMode(rdk::Mode::NRT_PLAN_EXECUTION);
robot.ExecutePlan("PLAN-Home");
// Wait for the plan to finish
while (robot.busy()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// Real-time Joint Floating
// =========================================================================================
// Switch to real-time joint torque control mode
robot.SwitchMode(rdk::Mode::RT_JOINT_TORQUE);
// Create real-time scheduler to run periodic tasks
rdk::Scheduler scheduler;
// Add periodic task with 1ms interval and highest applicable priority
scheduler.AddTask(
std::bind(PeriodicTask, std::ref(robot)), "HP periodic", 1, scheduler.max_priority());
// Start all added tasks
scheduler.Start();
// Block and wait for signal to stop scheduler tasks
while (!g_stop_sched) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
// Received signal to stop scheduler tasks
scheduler.Stop();
} catch (const std::exception& e) {
spdlog::error(e.what());
return 1;
}
return 0;
}