Flexiv RDK APIs  1.6.0
basics3_primitive_execution.cpp

This tutorial executes several basic robot primitives (unit skills). For detailed documentation on all available primitives, please see Flexiv Primitives.

Author
Flexiv
#include <spdlog/spdlog.h>
#include <iostream>
#include <iomanip>
#include <thread>
using namespace flexiv;
void PrintHelp()
{
// clang-format off
std::cout << "Required arguments: [robot_sn]" << std::endl;
std::cout << " robot_sn: Serial number of the robot to connect. Remove any space, e.g. Rizon4s-123456" << std::endl;
std::cout << "Optional arguments: None" << std::endl;
std::cout << std::endl;
// clang-format on
}
int main(int argc, char* argv[])
{
// Program Setup
// =============================================================================================
// Parse parameters
if (argc < 2 || rdk::utility::ProgramArgsExistAny(argc, argv, {"-h", "--help"})) {
PrintHelp();
return 1;
}
// Serial number of the robot to connect to. Remove any space, for example: Rizon4s-123456
std::string robot_sn = argv[1];
// Print description
spdlog::info(
">>> Tutorial description <<<\nThis tutorial executes several basic robot primitives (unit "
"skills). For detailed documentation on all available primitives, please see [Flexiv "
"Primitives](https://www.flexiv.com/primitives/).\n");
try {
// RDK Initialization
// =========================================================================================
// Instantiate robot interface
rdk::Robot robot(robot_sn);
// Clear fault on the connected robot if any
if (robot.fault()) {
spdlog::warn("Fault occurred on the connected robot, trying to clear ...");
// Try to clear the fault
if (!robot.ClearFault()) {
spdlog::error("Fault cannot be cleared, exiting ...");
return 1;
}
spdlog::info("Fault on the connected robot is cleared");
}
// Enable the robot, make sure the E-stop is released before enabling
spdlog::info("Enabling robot ...");
robot.Enable();
// Wait for the robot to become operational
while (!robot.operational()) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
spdlog::info("Robot is now operational");
// Execute Primitives
// =========================================================================================
// Switch to primitive execution mode
robot.SwitchMode(rdk::Mode::NRT_PRIMITIVE_EXECUTION);
// (1) Go to home pose
// -----------------------------------------------------------------------------------------
// All parameters of the "Home" primitive are optional, thus we can skip the parameters and
// the default values will be used
spdlog::info("Executing primitive: Home");
// Send command to robot
robot.ExecutePrimitive("Home", std::map<std::string, rdk::FlexivDataTypes> {});
// Wait for reached target
while (!std::get<int>(robot.primitive_states()["reachedTarget"])) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// (2) Move robot joints to target positions
// -----------------------------------------------------------------------------------------
// Required parameters:
// target: final joint positions, unit: degrees
// {arm joint positions}, {external axis joint positions}
// Optional parameters:
// waypoints: waypoints to pass before reaching the target
// (same format as above, but can be more than one)
// vel: TCP linear velocity, unit: m/s
// Optional properties:
// lockExternalAxes: whether to allow the external axes to move or not
spdlog::info("Executing primitive: MoveJ");
// Send command to robot
robot.ExecutePrimitive("MoveJ",
{
{"target", rdk::JPos({30, -45, 0, 90, 0, 40, 30}, {-50, 30})},
{"waypoints",
std::vector<rdk::JPos> {rdk::JPos({10, -30, 10, 30, 10, 15, 10}, {-15, 10}),
rdk::JPos({20, -60, -10, 60, -10, 30, 20}, {-30, 20})}},
},
{
{"lockExternalAxes", 0},
});
// Most primitives won't exit by themselves and require users to explicitly trigger
// transitions based on specific primitive states. Here we check if the primitive state
// [reachedTarget] becomes true and trigger the transition manually by sending a new
// primitive command.
while (!std::get<int>(robot.primitive_states()["reachedTarget"])) {
// Print current primitive states
spdlog::info("Current primitive states:");
for (const auto& st : robot.primitive_states()) {
std::cout << st.first << ": " << rdk::utility::FlexivTypes2Str(st.second);
std::cout << std::endl;
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// (3) Move robot TCP to a target pose in world (base) frame
// -----------------------------------------------------------------------------------------
// Required parameters:
// target: final TCP pose, unit: m and degrees
// {pos_x, pos_y, pos_z}, {rot_x, rot_y, rot_z}, {ref_frame, ref_point}
// Optional parameters:
// waypoints: waypoints to pass before reaching the target
// (same format as above, but can be more than one)
// vel: TCP linear velocity, unit: m/s
// NOTE: The rotations use Euler ZYX convention, rot_x means Euler ZYX angle around X axis
spdlog::info("Executing primitive: MoveL");
// Send command to robot
robot.ExecutePrimitive("MoveL",
{
{"target", rdk::Coord({0.65, -0.3, 0.2}, {180, 0, 180}, {"WORLD", "WORLD_ORIGIN"})},
{"waypoints",
std::vector<rdk::Coord> {
rdk::Coord({0.45, 0.1, 0.2}, {180, 0, 180}, {"WORLD", "WORLD_ORIGIN"}),
rdk::Coord({0.45, -0.3, 0.2}, {180, 0, 180}, {"WORLD", "WORLD_ORIGIN"})}},
{"vel", 0.6},
{"zoneRadius", "Z50"},
});
// Wait for reached target
while (!std::get<int>(robot.primitive_states()["reachedTarget"])) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// (4) Another MoveL that uses TCP frame
// -----------------------------------------------------------------------------------------
// In this example the reference frame is changed from WORLD::WORLD_ORIGIN to TRAJ::START,
// which represents the current TCP frame
spdlog::info("Executing primitive: MoveL");
// Example to convert target quaternion [w,x,y,z] to Euler ZYX using utility functions
std::array<double, 4> targetQuat = {0.9185587, 0.1767767, 0.3061862, 0.1767767};
// ZYX = [30, 30, 30] degrees
auto targetEulerDeg = rdk::utility::Rad2Deg(rdk::utility::Quat2EulerZYX(targetQuat));
// Send command to robot. This motion will hold current TCP position and only do rotation
robot.ExecutePrimitive(
"MoveL", {
{"target", rdk::Coord({0.0, 0.0, 0.0}, targetEulerDeg, {"TRAJ", "START"})},
{"vel", 0.2},
});
// Wait for reached target
while (!std::get<int>(robot.primitive_states()["reachedTarget"])) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
// All done, stop robot and put into IDLE mode
robot.Stop();
} catch (const std::exception& e) {
spdlog::error(e.what());
return 1;
}
return 0;
}